Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675664

RESUMO

The integration of a multidimensional treatment dominated by active ingredients of traditional Chinese medicine (TCM), including enhanced chemotherapy and synergistically amplification of oxidative damage, into a nanoplatform would be of great significance for furthering accurate and effective cancer treatment with the active ingredients of TCM. Herein, in this study, we designed and synthesized four matrine-proteolysis-targeting chimeras (PROTACs) (depending on different lengths of the chains named LST-1, LST-2, LST-3, and LST-4) based on PROTAC technology to overcome the limitations of matrine. LST-4, with better anti-tumor activity than matrine, still degrades p-Erk and p-Akt proteins. Moreover, LST-4 NPs formed via LST-4 self-assembly with stronger anti-tumor activity and glutathione (GSH) depletion ability could be enriched in lysosomes through their outstanding enhanced permeability and retention (EPR) effect. Then, we synthesized LST-4@ZnPc NPs with a low-pH-triggered drug release property that could release zinc(II) phthalocyanine (ZnPc) in tumor sites. LST-4@ZnPc NPs combine the application of chemotherapy and phototherapy, including both enhanced chemotherapy from LST-4 NPs and the synergistic amplification of oxidative damage, through increasing the reactive oxygen species (ROS) by photodynamic therapy (PDT), causing an GSH decrease via LST-4 mediation to effectively kill tumor cells. Therefore, multifunctional LST-4@ZnPc NPs are a promising method for killing cancer cells, which also provides a new paradigm for using natural products to kill tumors.


Assuntos
Alcaloides , Glutationa , Indóis , Isoindóis , Matrinas , Quinolizinas , Espécies Reativas de Oxigênio , Alcaloides/química , Alcaloides/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Quinolizinas/química , Quinolizinas/farmacologia , Glutationa/metabolismo , Humanos , Animais , Indóis/química , Indóis/farmacologia , Camundongos , Linhagem Celular Tumoral , Compostos de Zinco/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fotoquimioterapia/métodos , Proteólise , Nanopartículas/química
2.
Anal Chim Acta ; 1279: 341799, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827639

RESUMO

Xuebijing injection (XBJ) has a good therapeutic effect on the patients with severe coronavirus disease, but the material basis of XBJ with the anticoagulant effect to improve the coagulopathy and thromboembolism is still unclear. Herein, we developed a new strategy based on aggregation-induced emission (AIE) for monitoring thrombin activity and screening thrombin inhibitors from XBJ. The molecule AIE603 and the thrombin substrate peptide S-2238 were formed into AIE nanoparticle (AIENP) which emitted notable fluorescence due to the restriction of intramolecular motions. In the presence of thrombin, AIENP was specifically hydrolyzed and AIE603 was released from AIENP, leading to the decrease of fluorescence intensity. Furthermore, AIENP was combined with ultra-high performance liquid chromatography-fraction collector (UHPLC-FC) and ultra-high performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) for separation, preparation, screening and identification of the thrombin inhibitors from XBJ, a total of 58 chemical constituents were identified, among which 6 compounds possessed higher anticoagulant activity. Notably, the overall inhibition rate of the 6 mixed standards was equivalent to about 60% of the inhibition rate of XBJ. Therefore, this work provides a novel, cheap and simple method for monitoring thrombin activity and is promising to screen active substances from traditional Chinese medicines.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Anticoagulantes/farmacologia , Trombina , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas/métodos
3.
Molecules ; 28(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630314

RESUMO

The fraud phenomenon is currently widespread in the traditional Chinese medicine Radix Astragali (RA) market, especially where high-quality RA is substituted with low-quality RA. In this case, focused on polysaccharides from RA, the classification models were established for discrimination of RA from different growth patterns, origins, species, and growth years. 1H Nuclear Magnetic Resonance (H1-NMR) was used to establish the spectroscopy of polysaccharides from RA, which were used to distinguish RA via chemical pattern recognition methods. Specifically, orthogonal partial least squares discriminant analysis (OPLS-DA) and linear discriminant analysis (LDA) were used to successfully establish the classification models for RA from different growth patterns, origins, species, and growth years. The satisfactory parameters and high accuracy of internal and external verification of each model exhibited the reliable and good prediction ability of the developed models. In addition, the polysaccharide content and immunological activity were also tested, which was evaluated by the phagocytic activity of RAW 264.7. And the result showed that growth patterns and origins significantly affected the quality of RA. However, there was no significant difference in the aspects of origins and growth years. Accordingly, the developed strategy combined with chemical information, biological activity, and multivariate statistical method can provide new insight for the quality evaluation of traditional Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Imageamento por Ressonância Magnética , Polissacarídeos , Espectroscopia de Ressonância Magnética
4.
Sensors (Basel) ; 23(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447963

RESUMO

The differences in urinary proteins could provide a novel opportunity to distinguish the different types of drug-induced kidney injury (DIKI). In this research, Au nanoparticles-polyethyleneimine (AuNPs-PEI) and the three fluorophore-labeled proteins (FLPs) have been constructed as a multichannel fluorescent array sensor via electrostatic interaction, which was used to detect the subtle changes in urine collected from the pathological state of DIKI. Once the urine from different types of DIKI was introduced, the binding equilibrium between AuNPs-PEI and FLPs would be broken due to the competitive binding of urinary protein, and the corresponding fluorescence response pattern would be generated. Depending on the different fluorescence response patterns, the different types of DIKI were successfully identified by principal component analysis (PCA) and linear discriminant analysis (LDA). Accordingly, the strategy was expected to be a powerful technique for evaluating the potential unclear mechanisms of nephrotoxic drugs, which would provide a promising method for screening potential renal-protective drugs.


Assuntos
Ouro , Nanopartículas Metálicas , Proteínas , Corantes Fluorescentes , Rim
5.
ACS Sens ; 8(4): 1431-1439, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36877474

RESUMO

Diabetes nephropathy (DN) is one of the main causes of death in patients with diabetes. Cystatin C (Cys C) is a reliable indicator of glomerular filtration function. Therefore, it is urgent and meaningful to obtain early warning of DN by noninvasive measurement of Cys C. In this investigation, a novel fluorescence sensor (BSA-AIEgen sensor) was synthesized by cross-linking the aggregation-induced emission (AIE) characteristics of 2-(4-bromophenyl)-3-(4-(4-(diphenylamino) styryl) phenyl) fumaronitrile (TPABDFN) and bovine serum albumin (BSA), which exhibited the "On" state owing to the restriction of the intramolecular motions (RIM) phenomenon of TPABDFN. Intriguingly, a decrease in fluorescence of BSA-AIEgen sensors could be found owing to BSA on the surface of BSA-AIEgen sensor hydrolyzed by papain, but a reverse phenomenon emerged with the increase of Cys C content as the inhibitor of papain. Hence, Cys C was successfully detected by employing the fluorescent differential display and the linear range was from 12.5 ng/mL to 800 ng/mL (R2 = 0.994) with the limit of detection (LOD) of 7.10 ng/mL (S/N = 3). Further, the developed BSA-AIEgen sensor successfully differentiates patients with diabetes nephropathy from volunteers with the advantages of high specificity, low cost, and simple operation. Accordingly, it is expected to become a non-immunized method to monitor Cys C for the early warning, noninvasive diagnosis, and drug efficacy evaluation of diabetes nephropathy.


Assuntos
Cistatina C , Diabetes Mellitus , Humanos , Soroalbumina Bovina , Papaína , Limite de Detecção , Diabetes Mellitus/diagnóstico
6.
Anal Chim Acta ; 1236: 340562, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36396243

RESUMO

Cystatin C (Cys C) has been considered as a novel biomarker of kidney disease, which is thought to be a better indicator of glomerular filtration rate than creatinine (Scr) in the prediction of acute kidney injury (AKI). Hence, there is strong need to develop a precise, rapid and simple detection method for Cys C. Here we reported a Arg-liposome-amplified colorimetric immunoassay for the detection of Cys C to predict AKI. Cys C antibodies are conjugated on the surface of magnetic beads (MBs) and arginine (Arg)-loaded liposomes to form Ab1-MBs and Ab2-Arg-liposomes, respectively. When Ab1-MBs captured Cys C, Ab2-Arg-liposomes are added and incubated to form the immuno-sandwich complex. After magnetic separation, the surfactant Triton ×100 is added to damage the liposomes, leading to the release of Arg which can induce the gold nanoparticles aggregation. Therefore, the discoloration can be used for visual and quantitative detection of Cys C. Notably, the method has a linear relation in the range of 10-100 µg/L for Cys C with a limit of detection 4.32 µg/L, which is lower than some of the previous reports. In addition, the AKI mice serum samples were tested by the developed method, which were in good agreement with ELISA results. More intriguingly, the results of cisplatin induced acute kidney injury in mice showed that the method could be used to evaluate the protective effect of astragalus membranaceus (AM) on AKI by detecting Cys C in serum, providing a new strategy for screening renal protective drugs. Accordingly, a rapid and highly sensitive Cys C detection system was established with great potential for clinical diagnostics.


Assuntos
Injúria Renal Aguda , Nanopartículas Metálicas , Camundongos , Animais , Cistatina C , Lipossomos , Colorimetria , Arginina , Ouro , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Imunoensaio
7.
Front Pharmacol ; 13: 965131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249790

RESUMO

Daphnoretin (DAP), isolated from a traditional Chinese medicine Wikstroemia indica (Linn. C. A. Meyer), could induce apoptosis of hepatocellular cancer (HCC) and inhibit tumor growth. However, the application of DAP in cancer therapies was hampered because to its poor solubility. Herein, this study aimed to design an approach of double-targeted nano-preparation to enable the delivery of DAP to potentiate the therapeutical efficacy in liver cancer via glycyrrhetinic acid-polyethylene glycol-block-poly (D,L-lactic acid)/polyethylene glycol-block-poly (D,L-lactic acid)-DAP (GPP/PP-DAP). In particular, the purity of separated DAP was up to 98.12% for preparation research. GPP/PP-DAP was successfully prepared by the thin-film hydration method. Subsequently, the GPP/PP-DAP was optimized by univariate analysis and the response surface methodology, producing a stable and systemically injectable nano-preparation. Impressively, on the one hand, cytotoxicity studies showed that the IC50 of the GPP/PP-DAP was lower than that of free DAP. On the other hand, the GPP/PP-DAP was more likely to be endocytosed by HepG2 cells and targeted to the liver with orthotopic tumors, potentiating the therapeutical efficacy in HCC. Collectively, both in vitro and in vivo results indicated the excellent tumor inhibition and liver targeting of GPP/PP-DAP, suggesting the nano-preparation could serve as a potential drug delivery system for natural ingredients with anti-hepatoma activity to lay the theoretical foundation for clinical application.

8.
Int J Nanomedicine ; 17: 3723-3733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061124

RESUMO

Introduction: Urinary tract infections (UTI) are one of the most serious human bacterial infections affecting millions of people every year. Therefore, simple and reliable identification of the urinary tract pathogenic bacteria within a few minutes would be of great significance for diagnosis and treatment of clinical patients with UTIs. In this study, the fluorescence sensor was reported to guide the detection of urinary tract bacterial infections rapidly. Methods: The Ami-AuNPs-DNAs sensor was fabricated by the amino-modified Au nanoparticles (Ami-AuNPs) and six DNAs signal molecules, which bound to the urinary tract pathogenic bacteria and generated corresponding response signals. Further, based on the collected response signals, identification was performed by principal component analysis (PCA) and linear discriminant analysis (LDA). The Ami-AuNPs and Ami-AuNPs-DNAs were characterized by transmission electron microscopy, UV-vis absorption spectrum, Fourier transform infrared spectrum, dynamic light scattering and zeta potentials. Thereafter, the Ami-AuNPs-DNAs sensor was used to discriminate and identify five kinds of urinary tract pathogenic bacteria. Moreover, the quantitative analysis performance towards individual bacteria at different concentrations were also evaluated. Results: The Ami-AuNPs-DNAs sensor were synthesized successfully in terms of spherical, well-dispersed and uniform in size, which could well discriminate five main urinary tract pathogenic bacteria with unique fingerprint-like patterns and was sufficiently sensitive to determine individual bacteria with a detection limit to 1×107 cfu/mL. Furthermore, the sensor had also been successfully applied to identify bacteria in urine samples collected from clinical UTIs. Conclusion: The developed fluorescence sensor could be applied to rapid and accurate discrimination of urinary tract pathogenic bacteria and holds great promise for the diagnosis of the disease caused by bacterial infection.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Infecções Urinárias , Sistema Urinário , Bactérias , Infecções Bacterianas/diagnóstico , DNA , Fluorescência , Ouro , Humanos , Infecções Urinárias/diagnóstico , Infecções Urinárias/microbiologia
9.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144525

RESUMO

Lonicerae japonicae flos (LJF, Lonicera japonica Thunb.) is adopted as a core herb for preventing and treating influenza. However, the anti-influenza virus components of LJF and the impact of quality-affecting factors on the anti-influenza activity of LJF have not been systematically investigated. In this study, a strategy integrating anti-influenza virus activity, ultrahigh-performance liquid chromatography fingerprint and chemical pattern recognition was proposed for the efficacy and quality evaluation of LJF. As a result, six bioactive compounds were screened out and identified as neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, 4,5-Di-O-caffeoylquinic acid, sweroside and secoxyloganin. Based on the bioactive compounds, chemical pattern recognition models of LJF were established by a linear discriminant analysis (LDA). The results of the LDA models and anti-influenza virus activity demonstrated that cultivation pattern significantly affected the anti-influenza effect of LJF and that the neuraminidase inhibition rate of wild LJF was significantly higher than that of cultivated LJF. Moreover, the quality of LJF samples with different processing methods and geographical origins showed no obvious difference. Overall, the proposed strategy in the current study revealed the anti-influenza virus components of LJF and provided a feasible method for thequality evaluation of LJF, which has great importance for assuring the clinical effect against influenza of LJF.


Assuntos
Medicamentos de Ervas Chinesas , Lonicera , Ácido Clorogênico/análogos & derivados , Ácido Clorogênico/farmacologia , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Lonicera/química , Neuraminidase , Ácido Quínico/análogos & derivados
10.
Mikrochim Acta ; 189(8): 304, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915355

RESUMO

Identifying the progress of kidney injury may aid the effective treatment and intervention. Herein, we developed a fluorescent biosensor array for instantaneous and accurate identification of the kidney injury progression via "doubled" signals. The multichannel biosensor array consisted of polydopamine-polyethyleneimine (PDA-PEI) and multicolor-labelled different length of DNAs including AAAAA-Cyanine7 (5A-Cy7), AAAAAAAAAA-Texas Red (10A-Texas Red), and AAAAAAAAAAAAAAAAAAAA-VIC (20A-VIC). Facing to the variety of protein in urine with alterable charge accompanied with different progress of kidney injury, the composition of urine replaces the DNA signal molecules, forming their special fluorescence patterns. Taking the size of protein into consideration, the original three variables induced by the protein charge were extended to six variables induced by the two factors of protein particle size and charge difference, which could provide a more accurate strategy to identify the progress of kidney injury. Notably, this strategy not only opened up new perspective for identification the progress of kidney injury via the size and charge of urine protein, but also improved the resolving power of sensor array by increasing the number of sensor elements for extending their potential application to various diseases.


Assuntos
Técnicas Biossensoriais , Corantes Fluorescentes , Rim , Polietilenoimina , Proteínas
11.
Anal Chem ; 94(27): 9697-9705, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35767885

RESUMO

Acute kidney injury (AKI) has become a growing issue for patients with the extensive use of all kinds of drugs in clinic. Photoacoustic (PA) imaging provides a noninvasive and real-time imaging method for studying kidney injury, but it has inherent shortages in terms of high background signal and low detection sensitivity for exogenous imaging agents. Intriguingly, J-aggregation offers to tune the optical properties of the dyes, thus providing a platform for developing new PA probes with desired performance. In this study, a small-molecule PA probe (BDP-3) was designed and synthesized. We serendipitously discovered that BDP-3 can transform into renal clearable nanoaggregates under physiological conditions. The hydrodynamic diameter of the BDP-3 increased from 0.64 ± 0.11 to 3.74 ± 0.39 nm when the content of H2O increased from 40 to 90%. In addition, it was surprising that such a transforming process can significantly enhance its PA amplitude (2.06-fold). On this basis, PA imaging with BDP-3 was applied as a new method for the noninvasive detection of AKI induced by anticancer drugs, traditional Chinese medicine, and clinical contrast agents in animal models and exhibited higher sensitivity than the conventional serum index test, demonstrating great potential for further clinical diagnostic applications.


Assuntos
Injúria Renal Aguda , Antineoplásicos , Técnicas Fotoacústicas , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico por imagem , Animais , Meios de Contraste , Diagnóstico por Imagem , Técnicas Fotoacústicas/métodos
12.
J Ethnopharmacol ; 294: 115345, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35526732

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rhodiola crenulata (Hook.f. & Thomson) H.Ohba has a long history of clinical application for the prevention and treatment of acute mountain sickness (AMS) in traditional Chinese medicine. However, gaps in knowledge still exist in understanding the underlying mechanisms of Rhodiola crenulata against AMS. AIMS: To address this problem, a comprehensive method was established by combining UHPLC-Q-TOF-MS/MS analysis and network pharmacology. MATERIALS AND METHODS: The ingredients of Rhodiola crenulata were comprehensively analyzed using UHPLC-Q-TOF-MS/MS method. On this basis, a network pharmacology method incorporated target prediction, protein-protein interaction network, gene enrichment analysis and components-targets-pathways network was performed. Finally, the possible mechanisms were verified through molecular docking, in vitro and in vivo experiments. RESULTS: A total of 106 constituents of Rhodiola crenulata were charactered via UHPLC-Q-TOF-MS/MS. The 98 potentially active compounds out of 106 were screened and corresponded to 53 anti-AMS targets. Gene enrichment analysis revealed that hypoxia and inflammation related genes may be the central factors for Rhodiola crenulata to modulate AMS. Molecular docking revealed that TNF, VEGFA and HIF-1α had high affinities to Rhodiola crenulata compounds. Subsequently, Rhodiola crenulata extract was indicated to inhibit the protein expression level of TNF in hypoxia induced H9c2 cells. Lastly, Rhodiola crenulata extract was further verified to ameliorate heart injury and decreased the heart levels of TNF, VEGFA and HIF-1α in acute hypoxia-induced rats. CONCLUSIONS: This study used UHPLC-Q-TOF-MS/MS analysis and a network pharmacology to provide an important reference for revealing the potential mechanism of Rhodiola crenulata in the prevention and treatment of AMS.


Assuntos
Doença da Altitude , Rhodiola , Doença Aguda , Doença da Altitude/tratamento farmacológico , Animais , Cromatografia Líquida de Alta Pressão/métodos , Hipóxia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Rhodiola/química , Espectrometria de Massas em Tandem/métodos
13.
Molecules ; 26(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34833946

RESUMO

Rhodiola, especially Rhodiola crenulate and Rhodiola rosea, is an increasingly widely used traditional medicine or dietary supplement in Asian and western countries. Because of the phytochemical diversity and difference of therapeutic efficacy among Rhodiola species, it is crucial to accurately identify them. In this study, a simple and efficient method of the classification of Rhodiola crenulate, Rhodiola rosea, and their confusable species (Rhodiola serrata, Rhodiola yunnanensis, Rhodiola kirilowii and Rhodiola fastigiate) was established by UHPLC fingerprints combined with chemical pattern recognition analysis. The results showed that similarity analysis and principal component analysis (PCA) could not achieve accurate classification among the six Rhodiola species. Linear discriminant analysis (LDA) combined with stepwise feature selection exhibited effective discrimination. Seven characteristic peaks that are responsible for accurate classification were selected, and their distinguishing ability was successfully verified by partial least-squares discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA), respectively. Finally, the components of these seven characteristic peaks were identified as 1-(2-Hydroxy-2-methylbutanoate) ß-D-glucopyranose, 4-O-glucosyl-p-coumaric acid, salidroside, epigallocatechin, 1,2,3,4,6-pentagalloyglucose, epigallocatechin gallate, and (+)-isolarisiresinol-4'-O-ß-D-glucopyranoside or (+)-isolarisiresinol-4-O-ß-D-glucopyranoside, respectively. The results obtained in our study provided useful information for authenticity identification and classification of Rhodiola species.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Rhodiola/química , Análise Discriminante , Análise dos Mínimos Quadrados , Análise de Componente Principal , Rhodiola/classificação
14.
Molecules ; 26(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771156

RESUMO

According to French Paradox, red wine was famous for the potential effects on coronary heart disease (CHD), but the specific compounds against CHD were unclear. Therefore, screening and characterization of bioactive compounds from red wine was extremely necessary. In this paper, the multi-activity integrated strategy was developed and validated to screen, identify and quantify active compounds from red wine by using ultra high performance liquid chromatography-fraction collector (UHPLC-FC), ultra fast liquid chromatography-quadrupole-time-of-flight/mass spectrometry (UFLC-Q-TOF/MS) and bioactive analysis. UHPLC-FC was employed to separate and collect the components from red wine, which was further identified by UFLC-Q-TOF/MS to acquire their structural information. Furthermore, the active fractions were tested for antioxidant activity, inhibitory activity against thrombin and lipase activities in vitro by the activity screening kit. As the results, there were 37 fractions had antioxidant activity, 22 fractions had thrombin inhibitory activity and 28 fractions had lipase inhibitory activity. Finally, 77 active components from red wine were screened and 12 ingredients out of them were selected for quantification based on the integration of multi-activity. Collectively, the multi-activity integrated strategy was helpful for the rapid and effective discovery of bioactive components, which provided reference for exploring the health care function of food.


Assuntos
Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Lipase/antagonistas & inibidores , Trombina/antagonistas & inibidores , Vinho/análise , Antioxidantes/análise , Benzotiazóis/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/análise , Lipase/metabolismo , Ácidos Sulfônicos/antagonistas & inibidores , Espectrometria de Massas em Tandem , Trombina/metabolismo
15.
J Pharm Biomed Anal ; 203: 114230, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34182410

RESUMO

Cystatin C (Cys C) has been proposed as a fascinating glomerular filtration rate (GFR) marker for early detection of acute kidney injury and chronic kidney disease. However, most of traditional methods for Cys C detection are immunoassays, which was tedious to perform and unfriendly for economics. In this work, a novel and simple biosensor for the sensitive measurement of Cys C via DNase I-aided recycling amplification strategy was successfully constructed based on the graphene oxide (GO) and fluorophore-labelled aptamer, which can be used to the early prediction of kidney injury. The fluorescence of fluorophore-labelled aptamer was quenched by GO based on the Fluorescence Resonance Energy Transfer (FRET) and recovered with the existence of Cys C. In addition, the DNase I enzyme would digest the fluorophore-labelled aptamer and dissociate the Cys C to launch the next reaction, resulting in an increase of signal amplification. Hence, the limit of detection is found to be 0.16 ng mL-1, which is almost 3 times lower than that without DNase I. Consequently, the developed biosensor offers a novel approach towards simple and rapid detection of Cys C based on the integration of GO and aptamer. Conceivably, this strategy holds a wide scope in the application of numerous other analytes if corresponding aptamers are available.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Cistatina C , Desoxirribonuclease I , Taxa de Filtração Glomerular
16.
Anal Chim Acta ; 1160: 338447, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-33894967

RESUMO

Drug-induced kidney injury causes structural or functional abnormalities of kidney, seriously affecting clinical practice and drug discovery. However, rapid and effective identification of nephrotoxic drug mechanisms is yet a challenging task arising from the complexity and diversity of various nephrotoxic mechanisms. Herein, we have constructed a polydopamine-polyethyleneimine/quantum dots sensor to instantaneously read out the nephrotoxic drugs mechanisms based on the disparate cell surface phenotypes. Cell surface components induced by multiple nephrotoxic drugs can change the fluorescence emission of multicolor quantum dots, generating their corresponding fluorescent fingerprints. The fluorescence response signatures induced by different nephrotoxic agents are gained with 84% accuracy via linear discriminant analysis. Furthermore, taking the time-toxicity relationship into consideration, dynamic fluorescent fingerprint is obtained through continuous monitoring the progress of renal cell damage, achieving 100% precise classification for nephrotoxic mechanisms of four types of antibiotics. Notably, the fluorescent fingerprint-based high-throughput sensor has been demonstrated by successfully distinguishing nephrotoxic drugs in seconds, employing a promising protocol to discriminate the specific mechanism of nephrotoxic drugs, as well as drug safety evaluation.


Assuntos
Preparações Farmacêuticas , Pontos Quânticos , Antibacterianos , Fluorescência , Polietilenoimina , Pontos Quânticos/toxicidade , Espectrometria de Fluorescência
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 119027, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33068896

RESUMO

Commonly, an efficient photosensitizer usually requires a number of excellent properties, such as a larger molar absorption coefficient in the tissue transparency window, a high intersystem spin-crossing (ISC) probability induced by heavy atom and low dark toxicity as well as high photostability. In this study, NIR tetra-bromo thieno[3,2-b]thiophene-fused BODIPYs derivatives 3 was prepared, and fully characterized. Their photophysical properties have been well investigated including absorption, fluorescence profiles and photostability. The novel BODIPYs 2-3 possess long wavelength absorptions of maximum up to 720 nm with large molar absorption coefficients due to extend the effect of π-conjugation system via fusion the thieno[3,2-b]thiophene group. Especially, BODIPY 3 containing heavy atoms (four bromine atoms) exhibits photocytotoxicity upon irradiation with light NIR laser based on the results of MTT assays and flow analyses in living HeLa cells, in the meanwhile, it features lower cytotoxic in the dark. The current research work will contribute to the development of functional dyes and new organic NIR photosensitizer agents.


Assuntos
Fotoquimioterapia , Compostos de Boro , Células HeLa , Humanos , Tiofenos/farmacologia
18.
J Sep Sci ; 44(5): 1062-1071, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33378573

RESUMO

Angelicae Sinensis Radix is a world-renowned herbal medicine originating in China. Owing to many environmental and geographical factors, Angelicae Sinensis Radix from various origins may have a difference in the content of ingredients, which made the confusion in the clinical practice and market. Herein, a binary chromatographic fingerprinting analysis method is developed via hydrophilic interaction chromatography and reversed-phase liquid chromatography to obtain more chemical information. Following that, an ultra-performance liquid chromatography with a triple quadrupole mass spectrometry method is furnished to simultaneously detect 17 ingredients of Angelicae Sinensis Radix gathered from six geographic zones in China. Eventually, the principal component analysis is successfully carried out to classify and differentiate the Angelicae Sinensis Radix from different origins, meanwhile the quantitative volcano plots was used to observe the changes of ingredient trends vividly. Accordingly, the proposed binary chromatography and triple quadrupole tandem mass spectrometry coupled with multivariate statistical analysis can be utilized as a facile and reliable method for origin tracing and quality control of Angelicae Sinensis Radix.


Assuntos
Angelica sinensis/química , Medicamentos de Ervas Chinesas/análise , Plantas Medicinais/química , China , Cromatografia Líquida de Alta Pressão , Análise Multivariada , Espectrometria de Massas em Tandem
19.
Analyst ; 145(10): 3620-3625, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32338259

RESUMO

Early detection of acute kidney injury (AKI) is important, as early intervention and treatment can prevent further kidney injury and improve kidney health. Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as the earliest and promising non-invasive biomarker of AKI in urine, and has been used as a new predictive biomarker of AKI in the bench-to-bedside journey. In this work, a nanocomplex composed of a polydopamine nanosphere (PDANS) and a fluorophore-labelled aptamer has been constructed for the detection of NGAL using a DNase I-assisted recycling amplification strategy. After the addition of NGAL, the fluorescence intensity increases linearly over the NGAL concentration range from 12.5 to 400 pg mL-1. The limit of detection of this strategy is found to be 6.25 pg mL-1, which is almost 5 times lower than that of the method that does not involve DNase I. The process can be completed within 1 h, indicating a fast fluorescence response. Furthermore, the method using the nanocomplex coupled with DNase I has been successfully utilized for the detection of NGAL in the urine from cisplatin-induced AKI and five-sixths nephrectomized mice, demonstrating its promising ability for the early prediction of AKI. This method also demonstrates the protective effect of the Huangkui capsule on AKI, and provides an effective way to screen potentially protective drugs for renal disease.


Assuntos
Injúria Renal Aguda/diagnóstico , Aptâmeros de Nucleotídeos/metabolismo , Desoxirribonuclease I/metabolismo , Indóis/química , Limite de Detecção , Lipocalina-2/metabolismo , Nanosferas/química , Polímeros/química , Aptâmeros de Nucleotídeos/genética , Linhagem Celular , Humanos , Técnicas de Amplificação de Ácido Nucleico , Fatores de Tempo
20.
ACS Sens ; 5(4): 1119-1125, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32192327

RESUMO

Matrix metalloproteinase-9 (MMP-9) and matrix metalloproteinase-2 (MMP-2) play important roles in the progression of renal interstitial fibrosis (RIF). There is an increasing demand to construct a novel method for the simultaneous detection of MMP-9 and MMP-2 to monitor the progression of RIF. Herein, a strategy based on the nanoplatform composed of the polydopamine nanosphere and fluorescence-labeled aptamers is developed to simultaneously detect MMP-9 and MMP-2 with DNase-I-assisted recycling signal amplification. In the light of tracing the recovered fluorescence intensity at 520 and 610 nm upon adding MMP-9 and MMP-2, the increased fluorescence intensity is linear to the different concentrations of MMP-9 and MMP-2 with the detection limits of 9.6 and 25.6 pg/mL for MMP-9 and MMP-2, respectively. More intriguingly, the results of unilateral ureteral obstruction mice show that the concentration of MMP-9 in urine is increased with the extension of ligation time while the concentration of MMP-2 is reversed, indicating that the ratio of MMP-9 to MMP-2 could be considered as the potential urinary biomarker to evaluate the progress of RIF and the therapeutic effect of Huangkui capsule on RIF. Therefore, this study provides a paradigmatic strategy for the simultaneous detection of the dual markers of RIF, which is promising for the auxiliary clinical diagnosis and assessment of the prognosis of chronic kidney disease.


Assuntos
Desoxirribonuclease I/genética , Indóis/química , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Nanosferas/química , Polímeros/química , Insuficiência Renal Crônica/genética , Animais , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...